首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67330篇
  免费   5489篇
  国内免费   4217篇
  2023年   738篇
  2022年   823篇
  2021年   3276篇
  2020年   2090篇
  2019年   2653篇
  2018年   2527篇
  2017年   1906篇
  2016年   2734篇
  2015年   4017篇
  2014年   4761篇
  2013年   5252篇
  2012年   6055篇
  2011年   5612篇
  2010年   3272篇
  2009年   2961篇
  2008年   3443篇
  2007年   3068篇
  2006年   2679篇
  2005年   2298篇
  2004年   1932篇
  2003年   1670篇
  2002年   1452篇
  2001年   1359篇
  2000年   1187篇
  1999年   1175篇
  1998年   676篇
  1997年   733篇
  1996年   700篇
  1995年   663篇
  1994年   624篇
  1993年   477篇
  1992年   701篇
  1991年   553篇
  1990年   466篇
  1989年   391篇
  1988年   321篇
  1987年   280篇
  1986年   197篇
  1985年   247篇
  1984年   150篇
  1983年   134篇
  1982年   98篇
  1981年   73篇
  1980年   66篇
  1979年   81篇
  1978年   66篇
  1977年   46篇
  1976年   48篇
  1975年   40篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The yeast Saccharomyces cerevisiae possesses two distinct glycyl-tRNA synthetase (GlyRS) genes: GRS1 and GRS2. GRS1 is dually functional, encoding both cytoplasmic and mitochondrial activities, while GRS2 is dysfunctional and not required for growth. The protein products of these two genes, GlyRS1 and GlyRS2, are much alike but are distinguished by an insertion peptide of GlyRS1, which is absent from GlyRS2 and other eukaryotic homologues. We show that deletion or mutation of the insertion peptide modestly impaired the enzyme''s catalytic efficiency in vitro (with a 2- to 3-fold increase in Km and a 5- to 8-fold decrease in kcat). Consistently, GRS2 can be conveniently converted to a functional gene via codon optimization, and the insertion peptide is dispensable for protein stability and the rescue activity of GRS1 at 30°C in vivo. A phylogenetic analysis further showed that GRS1 and GRS2 are paralogues that arose from a gene duplication event relatively recently, with GRS1 being the predecessor. These results indicate that GlyRS2 is an active enzyme essentially resembling the insertion peptide-deleted form of GlyRS1. Our study suggests that the insertion peptide represents a novel auxiliary domain, which facilitates both productive docking and catalysis of cognate tRNAs.  相似文献   
2.
3.
4.
5.
6.
7.
The neuropeptide thyrotropin releasing hormone (TRH) is capable of influencing both neuronal mechanisms in the brain and the activity of the pituitary-thyroid endocrine axis. By the use of immunocytochemical techniques, first the ultrastructural features of TRH-immunoreactive (IR) perikarya and neuronal processes were studied, and then the relationship between TRH-IR neuronal elements and dopamine-beta-hydroxylase (DBH) or phenylethanolamine-N-methyltransferase (PNMT)-IR catecholaminergic axons was analyzed in the parvocellular subnuclei of the hypothalamic paraventricular nucleus (PVN). In control animals, only TRH-IR axons were detected and some of them seemed to follow the contour of immunonegative neurons. Colchicine treatment resulted in the appearance of TRH-IR material in parvocellular neurons of the PVN. At the ultrastructural level, immunolabel was associated with rough endoplasmic reticulum, free ribosomes and neurosecretory granules. Non-labelled axons formed synaptic specializations with both dendrites and perikarya of the TRH-synthesizing neurons. TRH-IR axons located in the parvocellular units of the PVN exhibited numerous intensely labelled dense-core and fewer small electron lucent vesicles. These axons were frequently observed to terminate on parvocellular neurons, forming both bouton- and en passant-type connections. The simultaneous light microscopic localization of DBH or PNMT-IR axons and TRH-synthesizing neurons demonstrated that catecholaminergic fibers established contacts with the dendrites and cell bodies of TRH-IR neurons. Ultrastructural analysis revealed the formation of asymmetric axo-somatic and axo-dendritic synaptic specializations between PNMT-immunopositive, adrenergic axons and TRH-IR neurons in the periventricular and medial parvocellular subnuclei of the PVN. These morphological data indicate that the hypophysiotrophic, thyrotropin releasing hormone synthesizing neurons of the PVN are directly influenced by the central epinephrine system and that TRH may act as a neurotransmitter or neuromodulator upon other paraventricular neurons.  相似文献   
8.
9.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
10.
Phase-sensitive two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 in aqueous deuterium oxide solution at four mixing times were quantified to give all nonoverlapping cross-peak intensities. A structural model for [d(GGTATACC)]2 was built in which the GG- and -CC moieties were in the B-DNA form, while the middle -TATA- moiety was in the wrinkled-D form (BDB model). This model was subjected to energy refinement by molecular mechanics calculations with the program AMBER. Counterions (Na+) were added to neutralize the charges, and water molecules were placed bridging across the minor groove. A complete relaxation matrix analysis was used to calculate two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 from the above models (before and after energy refinement) and from four other [d(GGTATACC)]2 structural models: regular A, crystalline A, regular B, and energy-minimized B. Among them, the energy-minimized BDB model yielded a set of theoretical spectra that gave the best fit to the experimental spectra. It was also the energetically most stable. Therefore, it is a good representation of the ensemble- and time-averaged structure of the octamer in solution. This model has backbone torsion angles similar to those of B-form DNA in the GG- and -CC moieties and torsion angles similar to those of wrinkled D form DNA in the -TATA- moiety. The base stacking and base pairing are not interrupted at the junctions between the two structural moieties. Its minor groove is narrower than that of B DNA, and the solvent-accessible surface of the minor groove forms a closed hydration tunnel in the middle -TATA- segment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号